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High tide;

Low tide;

-"‘lj

Ebb ‘tides

R 1

Termirclogy

the instant at which the water level in the estuary

attains its maximum heightj

the instant at which the water level in the estuary
attains its minimum heighﬁ; |

the time interval beginning at low tide and ending
at high tide;

thé;%imé interval beginning_at:h}gﬁﬁtide and ending

at Yow tide.
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Intrcduction.
The distribution of salt cr any other solute in an
estuary 1is go&érned by the dynamic flow pattern and the extent
to which #Qrtions of water having different solute concentrations
nix with each other. . The flow and the mixing are the result of
the cooplex interactions_of mény factors, e.g+, the flow due to
the river, the tidai flow, the ground seepage, evaporation, wind
stresses, gravity flow, etc. in"many7estuafies éome of these
factors are of much greater importance than others.. In the: follow-
ing investigation we 'restrict ourselves to estuaries in which the
tides and thé river flow are the predominant agents, and we
neglect all other influences. |
We furthermore confine our attention to estuarieé'which
are "essentially vertically homogeneous", Ey this-we-mean that
if measurements are made of the concentration of the solute by
taking samples over an entire transverse cross-section of the
estuary (i.e., a vertical section which is perpendicular to the
direction of the river flow) at any time during one or more tidal
cycles (during which time the conditions of river flow and tidal
amplitude are assumed to be unchanged), then the values of the
concentrationséo'obﬁained,will differ from one another by a
‘smaller order of mggnitndg than will the values obtained by taking
' measurements at various ppsitions.along‘the Tength of the estuary,
but anywhere 1n_a_§£Véh_??psgeégqtibn”anaﬂat any times /A typictl
_§é§e of’&n?§§fn5?§'whtéh_igjﬁot:ve;tiﬁéliiqﬁsﬁdgeneaﬁiiisxﬁﬁe—
which exhibils two ssubstantially distinct iayers of different.
.saliniti§3y the mqufséiing;‘aﬁd benﬁe dénser'lé§ér; beidéiégt

Paen mdemnwe T som hadnrms A
i - i WS b d Al
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tope In such an estuary the differences in salinity befween the
two layers at any given position along the estuary and at aﬁy
time will be greater tﬁan the différencesrbetwesn the salinities
at points in the same layer but at various staticns along the
estuary. The division of estuaries into vertically homogeneous
-and-"stratified" ones is, of course, not a sharp one, and cases
ghich do not clearly fall into one or the other category will be
ehcﬁﬁnﬁéfég in practice.

- The long range aim of a theoretical study of estuaries
is :to permit us to predict the distributiocu of any solute within
the estuary {rom a knowledge of the.river flowv and the tides,
.possibly including the introduction into the estuary, or the
‘reémoval therefrom, of any-solute by means of an external source
or sink, - suehi as the discharge of a pollutant by an industrial
plant. Q-complete.theory'weuld_;equire“aéstuéy of the detalled
velocity distrivbution and of the mixinmg processes, At our pres-
ent stage of knowledge the development of such a theory is much
too dif“icult, We must content ourselves with a more macrosconic
approach, i,e,, one which aims only at predicting some convenient
average variati-n of solute concentration as a function of poéi-
ticn along the estuary and possibly of t me, Such an anurﬂauh
has teen made hy,Ketqhdm [l]* and by Arons and- Stommel (21,
Ketchumfsub@ivides the estﬁary along its axis intc a number of
vblumes,,each of which is as long as the average”excursiop of ilhe
tide in the neighboriicod of the volume, and he assumes that com-

piete mixing taites nlace within esgcl: volume at high tide.

* ambersz in

square hrackets refer to the Ziblisgraphy at the
end of the rpage '

I
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Ketchum's methed is essentially a refinement of an older method
wvhich assumes that all the water in the estunary mixes completely
at high tide. = Arons 2nd Stommcl formulated Ketchum's idea-in
terms of a diffusion equation which they assume to govern the
solute distribution. The equation involvés an "eddy diffusivity®
whose value 1is assumed to depend on the amplitude of the tidal
velocity and the tidal excursion.

The following investigation represents an attempt to
derive (rather than to postulate) diffusion edquations by assuming
that the essence of the mixing process can be described in terms
of very simple physical -models. It is hoped that this approach
will give new insight intc the problem by showing clearly what
the assumptions are that lead -to a certain diffusion equation,
4nd how medifications or generalizations of the assumptions change
the equation.  Mcreever, such an approach may provide some guid-
ance in the development. of diffusion equations-describing other
why=1cal mcdels In"which various mixing processes may be: postu=
iated: Seiwtions of thnze equations may then be c¢ompared with
sbssTvation or exreriment to determine in which estuaries, if any,

the solute distribution is- adequately described by onhe or ancther

3
5
i

cke “the initial steps in

equation, In thig way we may hope to

-

aac ¢

¢

Tormulating laws which describe the saslute diffusisn 1n various
estuarles and in. beginning Lo understand the fuanction of the
varicus physical factors invelved,

' Excepting the final section of this rerort, 1t will al-
ways be assuméd that ali guentities are-periodic in time with the

reriod of & tisal cveld, 1In particuta¥, thie mecancs *ha:the hime
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average of -the solute distribution over a tidal cycle is the same
for every tidal cycle.

For brevity we shall usually speak o~ the salinity, but
it is to be understood that the investlisation applies equally
well to any solute.

We begin our considerations of mixing by examining an
estuéry or chamnel in which the motion of fluid and the distribu-
tion of salinity (or the distribution of any pollutant that 1s
introduced into the estuary) will be assumed to ve gé&erned by
three factors: ’

1) The tides, which are assumed here to cause a periodic
displaéement of part of the water of the estuaf& relative to the
résf of the water and hence permit the possibility of the mixing
of water from.different parts. of the estuary. (Thus, specifically,
in these considerations in which we investigate the salinity dis-
tribution, this tidal motion permits a mixing of the mcre saline
water downstream with that which is less saline further upstream.)
Our basic picture will assume that the-velocifiez due to the
river are much smaller than those due to the tides so thatv a
pronounced upcstream flow occurs duriig flood tide.

2) A small scale mixing or eddy diffusion, distances moved.
by the fluid because of this mixing imechanism being assumed small
relative tc the distances which the fluid moves due directly to
the tidess Ye shall not irguire into the detailed dynzuics that
canse this small scale mixing but will concern ourselves only with

the effect of the mixing.
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3) The river which prcduces a net flow of water (and hence
also of salt) downstream. The transvort of water due to the
tides and subsequent small scale mixing wi ?l pe Tound to produce
a net flux of salt upstream by mixing the more saline water
nearer the mcuth of the estuary with that which is less saline
further upstream, These twc net fluxes will be set equal in
treating the equilibrium condition in which there is no net flux
of salt upstream cver a tidal cycle,

The dynamics which are due to the tides and thereffect
of the small scale mixing as well as to the river are hypothe-~

sized. The salinity distribution then follows from the eguations

of continuity of salt and fluld, since we assume that the net

flué;gf_ﬁa}t.across any seqtion of the estuary ig'zero during a
tidal period. In the derivation of thz salinity diﬁtribuﬁioh we
shall fi;ktnfind the flux thét would be produced by‘th§°§}des'a§§
small scale mixiﬁg in the absence of a river flow, When next
taking the river flow 1nto account we assume that the velcnities
wﬂ;ch it causes are small in magnitlde ‘when COPpaPeG with the
veleocities causnd by the tides during most of the tidal cycle,
and hence that the basic picturs first described in the absencse

of river flow may be preserved when the river flow is inqlu&ed.

Ths channel 15 imsgined tc be divided as shown intoc two
re g 2 lower one of cross-sectional area bl(x,t), salinity

( t) (dimensions ML-B) in which the water moves with velccity

b)

(x,t) and an upper one with cross-sectinnal area, salinity and

velocity ba{x,t), sz(x,u) u,(x,t) respectively; x beln S-

vm

the d

[ oLl

_tance coorﬂinate along the length of the channel and U, 4 ﬁz' eing

the velocities due te the tides,
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Actuially we need not envisage such a clear-cut division between
the layers; they may be interspersed.. We need imagine oniy that
the channel contains fluid of two kinds, one with salinity sy,
moving with velocity uy, the other with salinity s,, moving with
velocity s, and finally fhat the total cross-sectioﬁal area of
the fluid of salinity s; be by, that of salinity s; be b,. For
convenience, however, we shall speak of the channel as if 1t

contained two distinct layers.

Kinetic Considerations.

We begin by assuming the chanael to be of constant
width, but shall generalize later to inciude the case in which
the width varies, For our consideration we shall need the cgua=-

inns of econtinuity for rluid and for sz2lt and some assumptions

ot

about by and by, Further, we will need to make some assumption

regarding the transfer of salt beiween the two layers. We have,

then, for the contiruity of flnid in the lower layer,

ab. 8{bsu,)
o SR b L
5t Y T g (1)

and for continuity of fiuid in thée upper layer-

(2)

4
I (%)
1
&
*
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Although we assume two distinct layers, each possessing 1ts own
velocity, an exchange of salt Hetween the two layers is permitted,

so that the eguation fer the continuity of salt is for the total

channel .
3(bagqy + bys55) 8(bysquy + basS,Us)
prggi 272 " 1°171 27272 e (3)
ot ax
Substituting (1) and (2) in (3) we have
b [_- —~-] b r-—--+ %%2y =0 %)
1 b u1 £ 2] 12 5% - .

It may be noted that in writing (1), (255 (3), and (%) we have
assumed that the f1nid in each laver moves with uniform velocity
over the entire depth of the layer. If we assume ihstead that
the fluid moticn takes place over depths by, b} (ise., not the

entire depth of the layers) then (1)m£2); (3) and (%) becone,

respectively,
S R :
e (11)
ot ax
ab a(bs, u,)
2 2 I T 1
iy e S
!
3(b,s, + bysy) 0(by S1u; + by 52u2)
+ =0 (31)
at B3x % =
(b as { LERY 35, ' 385, _
(by ....lat + bl uy _ax_) + (b2 o + b2 u, __._axé) = O.. (L)
In what follows we will assﬁme,‘L}wever, that bi = by, Dy = by

Befcre ccnsiderins what laws might be formulated
regarding the transfer of salt between the two. laners we shall
consider.a spe ific simw?lfleﬂ model wnich will heln in tne forma-

izticon ¢f these _zws and cerve as a guide in the solution of the

cp v ) " « ek = A v
proolen when we have more zenerazl models, We assume, for sur
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firs% specific case, that

u1:0
b, = a
G (%)
b2=b+ﬂ
n=C sin ut
where a, b, { and w are positive constants. The equation
b, = b + 1 assumes that the tidal wave-length is large compared

V2
with the length of the estuary so that the level of the estuary
rises uniformly oier its 1eng£h, .

Thus we have a stationary lower layer of constant
cross-sectional area and an upper layer the afea bf which varies
~sinusoidallyrwith:frequency,é;:ﬁherején/u = 4 15 the tidal period.
Assuming that the fiuid in the upper layer moves uaiformly over
the entire';rea~b2 = b + 1. we may use the continuity equation

(2) to determine U,

3b2.L‘a(b2u25 _ oy *“aﬁ(b.+73)y21
at x s) 0x

a[{b + qiu,]

{w cos wt +

*

8x
Thus =
(b +q)us, = = Lxw cos wt
4 B {Xw COs wt ()
= b+ { sin wt '

where we have set the arbitrary functizn of t whieh results
from this integration egual te zerc sc that-ué(o,t) = 0 for all t.
We keepr in mind that the reqsion of validity of the—expressions

for n and ug probably end for some pocitive value of xe Fguation
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(6) gives the veloc1ty us(x,t) of a partihie in terms of its

position x and the time te The p051*ion of the particle, 1, 4,

as funOulon of time may be found oy substlfuting f for x and
Xé(t; for u, in (6) arnd integrating:

i3 4 w cos wt

i S .

at b + { sin wt
or at Lw: cos wt

I_g = - - dt

> b + { sin wt

so that

-1
log &2 = log k (b + £ sin wt)

(@)
]
~~

~]

e’

k
Ly = (b + ¢ sin wt)

wvhere the constant of integration k may be detsrmined by knowing

the position at one particular time:

= i ,
g LRI € sin wtg

from which
&2(t Y(b + € sin-wty)
&2(t) = g (7')
b + ¢ sin wt

iﬂngtnijéﬁni;aéraf’gna - @ lcnlation of the Sait Flux.

‘Having congiaerea -the moiion of the upper layer
caused bty the tides directly, we now consider the second factor
whicn gOVETrns the salinity dlétributlcn, the small scale mixing
which produces a transfer of salt between the two layers.

We assume that mixing takes piace instantanecusiy
at high and law'tide only, and- Turther that the mixing at each of
these times £s comple ;> Llees, that the sallnities of the upper

T

and lover layess are equal §2} lc"ing'eaéi of - these ‘1x1n9a. e
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1

shall discuss later the plausibility of this asswmptione For

t
ey
0]

present we note that this assumption is in agreement with cur
concert of an essentially vertically homogeneous estuary.

Cur oxject is to caiculate the flux of salt past a
given cross-section during a tidal period due tc the action of
the tides, Since our ultimate goal 1s to derive a differential
equation for the salinity as a function of position along the
estuary we shall want tc describe the flux in terms of the salini-
ty. The differential equation will express the fact that in an
estuary in which conditions dc not change from one tidal cycle
to the next the upstream flux of salt due to the tides must be
exactly balanced by the downstream flux due to the river. The
flux will be obtained in the firet instance (see Eg. (29)) from
the mixing considerations described above in terms of the salini-
ties at a fixed position but at different instants of time,
namely those just ﬁrior to and immediately after the mixing at
high and low tide. Using the equations of continuity of salt
“within the urper layer these selinities will then be expré;sedr
in terms of the salinities at a fixed time and at various x (see
Egs. (30}, (33), and (34)). From these a differential equation
for the salinity as a function of x is derived,

In the model we now consider the salinity of the

asured in a frame of reference moving with the

o

aag m
2o T

velocity of the upper layer,_is constant, except when wtn:,n/z,_.

3%/2, «.v and hence

;T e (0 (B

except vhen wbt = £/2, 37/2, eee o
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From (&), in particuler,

: Om - A
ss{x, ;&255_122 - 0) = sp(x + gz,_3+n2m.1)“ + 0), (9}

where, from (7'},

. _'X(b + C)
Xk {2 = -*--t-;- 7 (10)

That is, the salinity of the uprer layer at some.

point x-along the-estuary just before mixing at - high tide is -
‘equal to the salinity of the upper layer just after the previous
low tide mixing at the point x + £, further downstream, £, being
the distance treveled from low to high tide by that section of

the upper layer vhich is at x at high tide. In simiia# fashion._

(4n + 3)m (4n + 1)m -

s,{x - 03 = so(x = &y 0) &x
n =0, £1, 2y ¢es
where, from (71)
o Xk B
e R B e e Y (12)
& Y

t; being the distauce traveled from hish-to-lcw tide by that sec-
tion of the upper layer which 1s at x at low tide,

Since the lower layer 1is assumed to be stationary,

LA L S (4n o+ L - _ (4n.- 1)m L
Pl s SO0S Sl ) (13)
iy (4n + V. Oj & ol (kn + I)n -0 oy
R Tt Zw . Tty Syl p i ¥ ()

n”—‘o,_i-l,jg, eve o

Further, from the assumptizn of complete mixing after hisgh and
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low tides, we have

; IR = - i )
sl(x, ﬁkgﬁg_l;- +0) = sy(x, ( nﬁt 1n S (15)
; 2w
s1(x, '(—lir}-a—:—izlt- +0) = s,5(x, .(.)ig,\.t_i)_’_t. + 0) (16)
ol
n= O, _': ]-, i 2’ ses »

At this point we ieave for a moment our rather
formalized derivation and show how the flux over a tidal period
may be derived quite simply by properly neglecting terms'of rela-
tive crder Z/b, We shall not attempt to justify the particular
aprroximations that are made therein since a more rigecrous deriva-

tion will be given suhsequently.

Derivation of Diffusion Equation from'Elementary Phyvsical Consider-

ations.

Let us begin with the conditions just after high
tide mixing and consider the transport of salt during a tidal
cycle across the section at xe During ebb tide a volume of water
of length Ei(see Fig. 2) and cross-sectional ares b* ¢ -v b moves
downstream past X« Since no mixing takes place the volume carries
all 1ts salt content past the section x. At low tide it instan-
taneously mixes with the more saline water below thus acguiring
a certain amount of salt, -Dvring flood tide the same volume of
- water (now of chSStsectional area b = {~ b and length &5)
:éovesfuﬁsfreammécr&és section x. - At high tide this voiume cccunies

the same position as it 4id at the begiaiaing of sur eycle, hut,

1aving acquired an amount of sslt at lcw tide it has a higher

salinity than it had just after high tide mixing. Moreover, the
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lower layer upstream of x, having lost some salt during low tide
mixing with a section of the upper layer which had moved down
during evb from a position Turcher upstream3 is now less salins
than at the beginning of our cycle., Hence, when mixing takes
place at high tide, the upper layer gives up salt to the lowver
oncse The cycle is now complete and we see that the net result
has been an upstream transport or flux of a certain amount of
salt past the section x. We now describe this pfocess in mathe-

matical terms.

Let
(4n + 1)
sp(%y —5—"" 4 0) = §y(x) (17)
(bn + )=
s5(x, gu + 0) = 8p(x). (18)
For 3n/20- $K/2w
"y A} ' 5 ] ) C,Xw 2% N wn
L <<h, %_ E2 i usat ! ) = =p— cos wt dt = A%L
/2w J /2w
from (6)., ~Thus we may call
R
£ = = (19)

the apprecximate amplitude of tidal displacement. (Note that if we
neglect terms of higher order in¢ /b in (10) and (12), we have
£1 v &5~ & .) Then, using (11), (i%), (16), (17), and (18) we

may write the souction for the continuity of salt at jow tide as
5., (%) + X = + RIS (- .
asﬁ( ) bSu(x = &) (a + b)5;(x) (20)

and that at high tide as

1t

éSL(x) + bSL(x + F) (a + b)SH(X) - (21)
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-in which we have substituted § for both {1 and §2 and neglected
terms of relative order /b (¢f. (20) with (33)). Now the salt
" trangport across a séction due to the tides is approximately

i . ,
bgo Spx + 4)at~ bESL(x + é) up, during flood tide and

13
| ;
b} gylx - Hab~ pEsy(x - %) down, during ebb tide, so that the

~net flux up due to the tides during a tidal cycle across a section
at x 1s

Fo=bElsp(x + ) - sy(x = 3) (22)

Returning to_(20)4and (21) we may, for /b << 1, write these in

the form : 3 2
aSy(x + 2) + bSy(x = ) = (a + LIS (x + %) (20%)
aSL(x q:%)+ bSL(xf+ é} :i(a + b)SH(x -—g) (21t)

respectively. We may now subétitute (20') in (22) and obtain an

equatiod iﬁ SH alone:

-

R

abt
st ) - gx - ) (23)
e

"
s
i\l“

plus terms of higher order in g, and hence of higher order in

Y/bs This result is identical with that given later in (27) since
from (19) ¢ = E%E and sincq.the constant ¢ in (37) 1is finally

set equal to zerc., The differcence in sign occurs bhecause F is
here the net flux upstream whereas in (37) F 1is the net flux
downstreaé.

Similarly, substituting (21') in (22} we may obtain
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an equation in SL alone:

ab

r LY
F o= - b[SL(x + 5) 2 sL(x = é)] (2% )
Tl
_ _abt™ ¢
s T a5 A

plus terms of higher order in & Thus 1f we call E(x) =
SH(x) + SL(x)

2
from (23) and (24)

the average salinity during a tidal cycle, then

F o= beb 3, (25)

Since we assume that there is no net increase of
salt over a tidal cycle, this net flux upstream must equal the
net flux downstream due to the river flow, so that

2

+ = ;ébg_ §§. 4003
BQS B b .ax k20

where R, is the river flow per tidal cycle. Equation (26) is the

integrated form of the diffusion equation

R

43 - 4 (8% 43
c dx dx.(a + b ai) (27)

that is cbtained again in (41), Using (19),Eq. (26) may be inte-

rated, as is done in Egse. (41) to (43).

Calculation of Sait Flux, continued.

. Although this direct derivation of the flux and
salinity'is the most satisiactory as far as seeing the origin of
thelvériahS'terés‘;n'(éé) is<concerned, a more formal derivation
'ih‘wpich ﬁhe terms thit are to. be hégleéted:are_pleafly exhibited

wag found- preferabtle when.generalizinzs the various facters that
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influence the final salinity. WYe turn therefore to the formal
computation-of the flux, F(x), of salt at a fixed section x over

a.tidél pefibd due to the tides and small scale mixing alone:
lq‘)'ﬁ/2u-0

Fx) = byuys, At (28)
Qﬂ/Zw'€0
(F here is the net flux é;wnstream.) In the integrand (which is
a function of x and t) x 1s held constant when integrating over
t. The chojc& of the limits of integration, ®/2w - 0 to 5m/2w =0,
1s arbitrary; we could have chosen any interval of length 2n/w,

Since vwe want to speak of mixing cr sait transfer hetween the
. _ (4n+Dm
7 = o
wh s i&gall (n=0y £ 1, # 2, oo ) it is convenient to have these

two Iayer$ "at" high of low tide, i.é., when wt or
points either definitely within or definitely outside of the
range of integration, hence the "-0" folloving #/2w and 51/2w in
the limits cf integration, Since the integrand in {15) is finite
for all t, we may omit the intervals n/2w - 0 < t < %/2w + O

and 3n/20 =0 < £-.< 3ﬁ/éu + 0 and write

-ﬁn/Zw-O n,n/Zw-O
F(x) ;j - b u,S,dt fj- boussydt, (237)
n/2Ww+0 3In/2w+0

so that - 3n/2w-0 aﬁn/EukO
+4 :
gF | ar af |
J W2wo J3W2uwC
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Now af  3(bousss)
¥ ax
a{bou,) as-

= Sp + Dolin oS

2 T 242 3%

3ba~ 3s

S ZuSyrasset oy ———x2 in view of (2)
L s (652 652) a(bESZ)

2 3% 2 9x at *

However, in either of the interwvals ‘E?T.» +0 <t g "2)2'3 -0,

Fwy e S 3sp dso . _
"2':;+O-<-t5-§3 OwehaVe.EE_-t-uzax = 0, so ‘that
31/ 2w=0 : n51[/ 2w=0
A" % ! ot 'l at -
i
Jn/ 2wt “J 3#(2'94-0

y

Dl ()

(b + C)Sz(x, =

+0) = (b = L)sy(x,

L

T
e
+ (b - C)splx, g.g.;o) - (b + Osylx, 3 - 0)

in view of (5),

In ) : 5
‘_/. J AXnress 9. t ® L .& - 3 e =
le now exnres s> at =G O, = + 0, and - O1in
terms of s2' at t = -23:) + 0, From (11)
52(3(, %—‘—Z - O) = Sz(x - El, -21%, + O)c (30)

In order to express S at -;3 + 0 and L 0 in t= ms of s, at
: 2w 2w

-,;‘;) + 0 we need the equation of contiaunity cf salt at the time of

[

mixing, which may be written as

(4n + 1)

2w

(L1 4+ 1)

as, (x, = 0) + (b =+ ¥)s,(x, - - 0)
o <

(tn + )= i = D0
Ly s DX 40 (B w C)sg(x, ;_;;T“___ + 0)
- YY)
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at high tide, and
= r), ) ; . B + 1{ -
asl(x, _Lig_imélﬁ - 0) + (b - g)sz(x,-iiﬁf__il_ - 0)
W _ L . cw e 1(32)
= gsl(x, L&%;i—ilﬁ + 0) + (b - Y)spix, SEB_i_QLE +.0)

2w

at low tide. Substituting (11), (1), and (16) in (32) we have

szfx,g%§1§-g) .

Tt M S o B W Bl et it WL
e s ALl h LRSS A e 1

anﬁ from (9) and (33) we' have

sp(x, 32 - 0)

I

e [asz(x + 52;-§i +0) + (b - C\SZ(X’ffi + 0)1(34)
is to be noted that the argument of the term multiplying
(b -C ) in (34) is now the high tide position of that section of
the upper layer which is found at x + o, at low tide, i.e.,, %, and
not x + §2 - £+ Substituting (30), (33), and (3%) in (29), we
have, finally, subhstituting ¢ = {/b

< ab(l +€) n s
4 - [sa(x, e 0) - so(x + 0y 35 * 0)]

dx.. a + . Belwig)

25
i Yau 2 T
g B(1 - gjls2(x, IR 32(x ~ £y o 0)]
where, frem {(9') and from (107)
T 2{1 7+
: 1 =g :
i)
B < & E‘-
VAR ) :" = " e it --:c
{ ,1 1 +:_e 2
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Assuming e << 1 we expand the right hand side of (35') in a power

series in = and keep cnly the terms of lowest order in e, which

-

2 = +0) )
OF oo Ho> ab -8 {XZ asz(xgx&o - (36)

The flux of selt at a section at x, over the tidal period

5 57r
ottt Sl Gl
is, therefore, y =
. : s
M - e v 85,(xy o= + O) . )
™ ";Z T e = + C. (37

We now compute the flux due to the river fiow (the
third factor which detérmihes”thé Salt distribution) aﬁd add this
flux to the flux produced by the tides (given in (37;), so that
there is no net flux of salt over a tidal period., The flux duse
to tiw river 1s '7’;.7/2(}-0

g = Rs*(x,;t)dt 138>
Jn/2 w-0
where R i1s the river flow across any section and has the dimen-
sions of I3T"L, and s* is related to sq and s, as follows:
| If the river produced a [low in each of the layers pro-
portional to the cfoss-section of the layer, then we might define
asy + (b +q)sp

s* = o If the river acted over a cross-section
a+b+n '

A(x,t)-on the lower layer: and ovar;a;:*crpss-gecticn B{x,t) on the
: P "“'*’4 5
ucper layer, then we would have s¥ h"”jf*'jfig However, over

.a tidal aycle the ast flux vircduced by the tideg and smail scale

mizing-arid By the river flow is »n so -that the salinity of

=zach of tu; layers is pericdi

[$)

« Thus we may write, for any time

00y B0 2 - 0) ¢
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(97} and (12) give, for any time t,

oy . 4
Sl(x,t_) = SQ(X, ?:J + 0) + O(s)
s5(x,t) = sp(x, é% + 0) +»O(%) (39)
As, + Bs A
-
5 8) = g ? 5 ay(x, £+ 0) + 0,
Thus (38) becomes
6= 2L R [aytx, 2 4 0) + 0], (40)

derivation of Salinity.
in adding the flux due to tides and small scale mixing

to that due to the river flow we neglect the terms in (40) of

Cg). ‘Having shown-in-(39) that the time:variation of the salin-
ity_in.either layer is of" 0(53,~wa may again negliect terms of
O(§3 and replace. sz(x, %L + 0)Y 1n (37). and (40) by s{x), which
"may“bﬁ,interpreted to be the salinity ai x to within terms of
relative order% at any time, Adding F and G in (37) and (40)

and setting their sum equal to -zero we-then have

S e o 2%
e g2 =.¢ = = Rs, (51)

the solution of which-is

w 2nR 1
5og log (5 4 0) = - ey + ot
£° ab
. x
| b2»a + b
so that %
£ e ; k
s - cla X
) ==Xt ERS Y X (1t

where
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N

x=_Ta+h R, R
2w ab ¢ )

lec
N

O, which is consistent with the

We now set ¢ = 0 so that s(0)
fact that uZ(O,t) = for all t so that no salt can get upsiream
of the section at x = 0.

The constant c¢' is determined by knowing the salinity

at some particular point:

w ?Ecn_}_i
= P W
sCLY = 5T e L
so that k
2—&3 c? . 7
= ‘

SR e v = g(L)e
and hence k(& . 1)

s(x) = s(L)ye L x* , (%2)

In particular, if we denote the ocean salinity by dy and define
“the length L of the estuary to be the distance between the point
at which s(x) = O and s{x) = g, then
¥((-2L
7 (1 x)

S =86 s 2o 5 5

It should be noted that Arons and Stommel [2] arrive at this same
result using dimensional analysis and call k/L the flushing number,
In terms of the notaticn used here their flushing number egquals
R{a + b)

2B° WL
paper of Arons and Stommel. It arises in their paper from the

where B 1s a constant which remains undetermined in the

assumption that the eddy diffusivity A of the salt transfer equa-

. 3 :
tion %% + u-%i S (A %ﬁ),which they postulate as a basis for
their considerations, is given by A = 2B{,U, where 2§ _  1s the total
excursion, over a tidal period, of a particle due to the tides,

Uo is the amplitude of the tidal velozity and u is the river
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velocity. Equating their flushing number to k/L (see Eq. (%1")),
we have ' .
nb

which relates B to the parameters of this paper.

Calculation of ¥lux for Genéraliged Mixing Procesgs.

Let us now consider the various ways in which we might

make the present model less restrictive, in order that it have a

"~ better cﬁance of correspondiﬂg with reality, and lnvestizate how

the salinity distribution is affected by the modifications which

are introduced. : it
We firstldonsi&er a model in which the dyhgmics'are

those previously described but inétead of assuming mixing -to take

place at high and low tide alone (t = X and t = 3% respectively,

2w 2w
S e : = = .=
we assume that there is mixing at t = -g; %, %’:}, %’-‘ « Moreover,

wg,shéil not démand that‘the mixinz be complete at each-of these
times, but rather only that at each mixing a certain quantity of
fluid from the top layer exchanges places with an equal quantity
of fiuid frcm the bottom layer. Let Q(x,t) be the cross-sectional
area of the section of fluld that 1s exchanged during mixing at

time t, and position x along the estuary, For brevity let

w0
1

1t

= s (x,t - 0) st =s (x,t+0) .
1 d L (45)

1]

so” = splx,t = 0) s,7 = sp(x,t + C)s

Then in view of the continuity of salt

(by = 9)sy™ + Gsy” = bysy” (46)
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(@]

which may be written as

- bl(sl+ = sl‘) = 3(s1" - s5) {46 1)

and ) -
(b2 - Q)S2 + QSl- ] b252+ (47)'

which may be written as

- bylsyt = 857) = Qls,T - 877 (471)

IT the exchénge o7 salt betwecn the two layers occurs contlhnuously

rather than at discrete points in time, then (46!') and (47') read,

respectively,
8s, (x,%) 857 (x,t)
- blﬂ-—ﬁgg——f + Uy ———EE—~—) = Qs1(xyt) = s5(x4t)] (46")
S 98,(x,t) ~ 98,(x,t) \ . :
- bz(——gEEl"— + U, ——253;__) = Q[so(x,t) - sl(x,t)] (L+7')

1.8¢, in either case, the rate of discharge of salt frocm any one
layer into the other is proportional to the difference of the
salinities of the two layers, It may be noted that (46") and
(47"} satisfy Bq. (4) for the continuity of salt:

S5 as as a8
e i 2) =
blgat~“f M axv) +'b2gat e Mougef) 2.0,

Reexamining the case in which we had complete mixing, it may be
noted, suhstituting (15) in (31) and (16) in (32), that both of

;these equations may be exnressed in our present notation by the
Sl + - b151-+b252-
by + By

) o - . - & + ; .y =
ecuation b191 + b252 — (bl + b2)s2 from which S5

80 that

s

|
o
)
—~
(]
N
+
L]
(6]
n
N’
i
!
o
2
~
)
!
i
-
+
o
]

(48)

]
1
]
1
3
1
—t



D
N

Nonr-56202/2

or, alternately, since both (31) and (32) may be written as

= - _ o ¥
bl 8, & b252 = blol + b252+ ()-{-9)
or
bylsy* - 877) + bolsy™ = 857) = O, (491)
we may also write (48) in the form:
=5 g e [sy 2 |
By B
Thus for complete mixing Q = jE—lfj: 4 from which we have both
LBy B

Q < by and Q < b,, as might be hoped.
: In postulating a mixiﬁé fhat is less than complete, we
shall assume q = a(t)
TP SR

bl' by

(50)

where a will be permitted to be a periodic function of t (with
period 2n/w) independent of x, and 0 ¢ @ £ 1. It is zero at
times othef than ni/Zw y is€ey when thefe is no mixing,

- In the case in which we assumed mixing at high and low
tides oﬁly the flux was given by (28) énd (28'), To obtain the
equation for the present model which will be analogous to (28')
we omit the intervals about the four points nm/2w, n = 1,2,3,k4
Fbllowing:ﬁhewwdfk ptcviouély'done, we arrive aﬁ fhe equation
which'cqrresponds to (29) and’reéds

dF
dx

(b + Lisa(xy 5% +0) - bsy(x, g - 0)

+ bs,(x, % +0) -« (b - g)sz(x; %% - 0)

(b = L)ss(x, 3T 4 0) - bs,(x, %? - 0)

(51)

+

2w

bs,{x, %§ + 0} = (b + ¥)so(x, Zf o

+

N

“W
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As vefore, we must express the salinities at nn/2w + 0
(n = 2,3,4) and at nn/2vw - O(n = 2,3,4,5) in terms of the salin-
ity at ®=/2w + O; this time through the use of (7'}, (46‘), 471),
(49) and {50), We now prloceed to do thise We have (for the
reasons mentioned in connection with the derivation of (9) and
(11)), i
sp(xy & - 0) = splx - 4y, 'é% + 0) (52)
where; from (7')

A, being the distance travelled from high to mid-tide by that
.?&éétidn of the upper layer which is at x at mid-tide. Next,

from. (4 7') and (50) we have

-b[sz(g, %_f,o)-ééﬂx; ﬁ “ o)’]="1 22 [sy(xy 7= 0)esy(x, & = 0)](H)

g |
a ; b
#ere
S
an = a(t -:-2;)3 (5“*")
Noting that s - N .
s1(%, 5 - 0) = 53(x, 5= + 0) (53)

for the reasons menticned in connecticn with (13) and ‘(l’;') we

have, upon substitution of (52) and (55) in (94),

sp(xy §#0) = [1 = =flsp(x = By K+ 02+ —2 5 (x, L + 0)4(56)

Further, similarly to (52); wc have

in

s,_;_.(x, ﬁ - 0) = 52(3( = Az, & + O) (57)
where, Irom (71), x(b - )
5 oy = BBE 0 (58)

|9
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The physical meaning of A, as well as all further A; (1 =1,
«es 5 8) which will be defined below can be determined from Eq.
(7).

Substituting (57) in (56) we have

IR o 7 T
so(x, -2-’;; -0) = [1 ~ ]sz(t A3, —-'+u)+ b 5, (x=0, 55 + 0)
(59)
where, from (7') ‘ ( )
' XA, Ex . (60)
3a 7T
Next, from (47%), (50)”and'(5k*),
= (b= Olsplxy 25+ 0) = s(x, 3= 0)] =
= w2 [5p(x, 38 - 0) - 5;(x, 35 - 0) 61.
= 1 __ 2\ ) 1 ’ = }t ( 1)
4-9.. +. -b—}Z W 2(‘?
Now, similarly to ( 5‘5}'_"-we. have
510x, 35 - 0) = 5y0x, T 4 0) (62)
and from (1#6_" end (5Q)
- als1(xy X +0) =8 (x, 5= 0} = il { .( 2 i)
TS o e E N s v R
: a b

L
sz(x, e 0)] - (63)

w.dch may be written as

- i o ba o ba
LS = T 2 .
5,(xy g +0) = [1 - --—-]sl(x, Z-0) +A;.§ s5(xy L - 0)
N | (631
) - 22218, (2, L L : T
[l a+b]$l(x, 2(.) <+ O) + -;;6 Sg(x - Al’ -Zs -j O)
from (55) and (52). Thus from (6_3') and (62) we have
SRl ba, ba.
¢ m— - - LY S 4 [ i s “
S]_(X, 5w ¢) =-[1 = :151(19 o) J) e aZ(X _ Al, 5o 0)
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and substituting (6%) and (59) in (61) we have

A /
g e ~ aq - - e T }
¥ _ aa [1 - —27 s, (x - — 3 0)
SZ(X7 -2-3 +0) ={1 - -8-,_453—5 ]5 a-\\-bJ 2 A3’ 2(.)' '>
= < aa, o J
, tE aEla gt O (65)
ba
: 2 T -
Pl - —S
aa ',[1 a+b] sl(x, o 0) :
o — L
. a+b=C < ba !
, et s iy
1 Tae Splx =By 75 * O)\! .
Next, in analogy to (52), we have
211‘. X " ,
where, from (7?_}:‘,_-
: 2 xb
x.“.+_A)+_. T = C . (67)
Substituting ‘636)'_ in (65) we have, nsﬁ.‘:ig“?(?'l).,,
(
. ]
[1-—21 s5(x ~ A7, 5= +0)
s2(x, = =l __3.(]{ a+b” "2 1 3% L
.. hay
| 3 w0 (68)
7-,_ g ba = T 'ﬂ i
1 - ——--] sl(x - Ah, 5 + 0) |
Sl )
34 D= < 2 . T !
s ki = 32‘““5”5’*0)@
i _ ) :
where Y 2
' b
it e (69)
b - g
Now, from (471!), (50)_and_(51+'.'),
; en
- b[sz(x, -5- + 0) - 35(x, ke o)} . o)

@

=
= ¥
a

{ 52(3(’ -Z: - O) L .;1(.{, -:1— T - O)]
b .



Substituting (59) and (6%)

T (b0,
e -2 I ¢ 29
St speal.s [t

. -(-E:C)C%
a+b=-C

Thus, substituting (74) in the right hand
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and analogously to (55),
2}’[. _ 1 31( g
Sl(x’ ""'J = O) = Sl(x, 'x + 0), (71)
Further, from (46') and (50),
(72)
& . 3z ]
T [t 3 - 0 - sle £ - 00)
a b={
from which
oy
Sl ?C, -é-(:) 4 O) =
* (b-Lia — 5 ‘.‘_(b:-,l:)a' g 3 :
- 037 s:(xy 2L 2 0) + ———2 s,(x, 2E - 0)s (73)
[ a+b-z;]1"" a+b-f 2 2w

ba il LA
___g] sl(x—’ W T e)) ,!
-2

a+b 2w
g i i
bag - N
¥ + a+h '.Sz(x - Al, _,an -f-OB
_ ' (74)
3 aa ~
T » P
[ - g ) Bl 235 5f +.0)

{

v

i) a 5 ‘1‘[. '
R R O

side of (71) and the

result cf that substitution as well as (68) in (70), we have
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50

P
| ;
: a

S ey
| a+b=-U"
i
i

") S

oF = } -
e aq J
{ g a4b=’,
Lo i e
2
L

Finally, ve have In anzlogy to (52)

é : (_1.1 3 ‘K_
2=57

“where, from (7')

[

”+4¢6w

g z<?~f C)

b “

30

ada o
.-_ “"‘2 ]SQ(Y‘A]_"‘"{“

_ aao
a+b 1

o .._..B ]sl{X+A‘-+’ T

5, (x,

W

au s _..
2 RN
e A L

- 0) = s,(x + & ,:2;:34,0)

Substituting (76) in (75) we have, using (7'}

5y
7-;—“

s,(x,

(78)

T v de s maem o wm Y
prRAaS i Uid L

o>..[1;

n—
} : an
a+b ;[ a-vh-t
1 ;<
1 g
i
i

§ ad,
e
f

e —-—-J.,l(x+/.\

+

a0, ]
B sl(x+AA,

o

_BJS (A, """" +0)

LS
2w

bn

_

‘w
,b,"lﬁ .

e
£ 5 (X+8 4 = +
a+b 27 % 2w

<+o)T_'
2 + O)S;

._....-x.

——— «

—
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e
[ ba e
x (b-C)a3 ]Fl = g:‘Jsl(X*ﬁea - +0)
L e i
3 Tb- CI >
(78) cont. i arb=f- & e o (x, .
ad U a+b 2w 3
a+b ‘\ } 2 % ~
(b-Lde, (1 = Frpisali-fay 5= +0)f
| o=
1 a+b-{ - a(I >
! R b 54 (x= A8, +0)
’u L‘ £ 2 V\
where x(b + %) 20 = C5) _
X% R R S e - {79)
. e : BiE _

We now substitute (52), (56), (59), (65), (68), (75), and (78)

in (51) and, making use of (53), (58), (60), (57), (69), (PZ ),

and (79), expand the resulting expression'for dF/dx in a power
series in{ /b, keeping only the terms of lowest order in {/be

From this proceduré we obtein an expression involving both

s1(x, m/2w + 0} and sy(x, M/2w + 0), In order to simplify this
expressioﬁ we shall make the additional assumption that the mixing

at high tide is complete (i.e., that g, = 1 and sz(x, /2w + 0) =

1
sl(x, /2w + 0)). We then obtain

. +0
B T L5 oh 9 g2 DMElIyag O (80)
dx b2 a+b ox ax

whare

(81)

M = an + ha3 + @ - 2a a3 = 02a1+ z 20!.3(1,+ + aea a

34
It may Turther be noted that 1f we agsumed the mixing 2t low tide

to. be complete (a3 = 1) and that at high tide arbitrary then the

above eguation is éhangea only in that a3 must be repiaéed by al

throughout, Comparing (80) with (36) we mayv note that these equa

tions are identical except that the coefficient "4 in (36) is
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replaced by M which reduces to. 4 if we let o, = Gy = 0 -and ag.=.1;
as it shoulds IT may also be noted that the above ccefficient
reduces to unity.if.we set 62 =a, = 1 a34=_09h This is as it
should be, since in generai the flux is proportional to the square
of the total-excursion of the upper layer dvring '@ tidal cycle,
and, as far as the mixing process is ﬂcncerned the unper

layer has effectlvely moved B o a2 & uh = 1, ‘aé _:Q)“onlyuhalf
the dlstance moved in the first model, Following,the WwOoTrk pre=
viously done in going from Eqs. (26) to (42), we may note that
u&ith this more general model we arrive at Egs, (#2) and (43) for
the salinlty eiCept that the parameter k in each of thesé equa-
tions ‘must be replaced by |
“(a : + b) 4};2_3_ 2
w ab '%Q?M :

“In (82) 1t should be noted that since O £,

P Ees. €82)

I = 2,34 ve

may writs

ey AZajélgs 2Jﬂ+-2 3(l“f au)_+ a ’au +Ja§f+-guﬂl{-~& j

2%3 2

(83)
2 ¢}
since eacli of the five terms 1n the ~second expression is non-

negative, ﬂotins that we m2y also write
i - i o 1 - - s - = - Yl loa .
=4 - q, ay, = 201 az)(l LB) 2(1 au)(l @) (1 §3,a2aL+
<h, - (84)

sinca each of the five terms f01iowing the 4 in the second expres-

sion 1s negetive, we have from (83} ~1d (8%)

C gMl
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where, from (83) the left hand equality is satisfied only if
‘a;z—:---a-3"'=’u1+ 0 and the rlght hand equaljfy is catisfied only
if'a2-“ @, =0 and a3 l. If a and b can be obtained frem—obser-
vatlons then by matching the obserVed salinity with that predicted
by this theoretlcal model, it should be possible to obtain an
eetimate -of M and hence to obtain an idea of where during the
tidal cycle most of the~mixing.tgkes.place,.large va;hes of ' M

p céf?ésponqinéfiﬁ_afstate‘gn whidﬁ m ost of the mixing takes place.

at high and at lew tides

Extension of Analysig to Chgnnel of Varying Cross-Section.

We now con«ider a different extensicn of our original

model. Aa first assumed ~we again postu’ate mixing to occur only
at high and low - tides, and that the mixing at egghlof these times
is complete. The‘dygam_cs are essentially those originally des-
ctibéd., Ho&ever, the cross~-sectional area of the stationary layer
is now a(x) in pléce of fhe constant g,'the aﬁerage:aréa of the'
moving layer is,b(x), and- the time van&ing"part of the moving
layer-is ¢(x) sin wt in piaée.of { sin wt, Following the calcu=
lations connected with the first model, we see that Eqs (29) 1s
changed only in that now b = b(x), ¥ = {x)s Eguaticn (30):

3n

- - L
85(x, = .Q) 32(x z 5=

&1 1s ro longer given by (12) since Eqo (6), from which it was

+ 0) must be modified only in that

derived, must te modified as is -shown in (38), Uith this modifi-.

cation implied, (33) must now read

3

1 'y C e 5.2
e r e acy RECERCIEC SRS TR X s S 0T

(85)
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Equation (34) must be slightly modified, howéve:! since substitut-
ing (9) in (85) (rather than in (33)) we have

-[a(x+§2)32(X+£2,'£t +0)+(blx+E,) = L(x+E,)) 5,(x,y ﬁ%;f’g)]

. , (86)

a(X+E,) -+ BIX+E,)= L(x+E,)

in Hhichuit;hust-bg recalled that &, is no longer given by (10).
Substituting (30), (85) and (86) in (29) we . now have

aF _ a(x) [b(x) + Ux)] S ————

i vorey papr LR PRE L R

= , (87>

a(x+€2)(b(x)+§(x)]

o [s5(%y g +0)=8,(x+E,, 5o + 0)].

a(x+£2)+b(x+52)-c(x+;2) 2w >

We must now express §1(x)-and‘52(x)win terms of b(x) and {(x),
and hence must regaléuiate_Eq; (7§,giving the position of a parti=-
cle as a function of time for the case in which a, b, { are
variable,

Returning to Eq..(z) for the continuity of filuid in cthe

upper layer we have

"

-;i[(b(x} + L(x)sin wthup) = = 2lb(x) + Llx)sin wt)

- Z{x)w cos wt

which, upon integrating, gives
' x
Al

[b(x) + L(x)sin ut]u2 = - w oS wtf C(x")axs *

N6

*Se¢ remark following Eq. (D),
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or w cos utLL {(x")dax!

u, = = gl 8
& b{x) + %(x) sin wt (88)

Following the procedure used in the derivation of (7') we write

i w ¢O0S utj;{(x')dx'

b(4) + (L) sin wt

which may be written in the form

2
é% [sin.wti C(x")dx'] = - b{k) (89).
J i .
0

‘rezarding t as a function of L. From (89), recalling that x + Es
ls the low tide position of a particle which is at x at high tide,

we have
4 y x+€2
1{~x+£ t=31/2w { 2
[sin wt | TUx' )dx =5 b(L)dd.
A=x,t=n/2w
0 X
or T ¢ X+£2 .
z:(x'>dx'-+J L(xax' = } b{dsdL. (90)
% ¥ \O \x
Similarly, we have
{ b
£ ! A=x,t=3 /2w [
[sin ut ‘ Z(x")dax! } b()d4
Y x‘Clst n/2a J
0 -K
or ' {
j U(x')dax! +_g Lix?yd%l-= } b(4)al . (91)
D 0 "éc-gl

In crder to expand dF/dx as given in (37) in a power
series as was done in the case in which { and b were constants,

1%t vill be convenient to write
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(x) = 7m(x)
b(x) = buix)

{92)

‘where { and b are constants, having the dimensions and ordsr of
magnitude of Y(x) and b(x), respectively., A(x) and up(x) are
thus non-dimensional and of order one. With these substitutions

(90)- and (91) become "

¢ | e
s s (501
'3 2 l‘—a—l ‘ ! !
A(xt)ax +J A(x')dx
Lo )
>
: \jx_gl‘p(i)d% '
S = {}X—:V X * (91')
: | 1 X(x!)ax! +{ A(xt)ax!
v 0 e
In (90') and (911) we now‘gonEider;
TR P
e Px) et

ags a function of'tz and El respectively, from which we Tinally

obtain-power”series in ¢ for 52 and {1. Thus from (901!)

e(0) =0

ge(c) - plx)

2 = —L (93)
2 S e Goagt

Jjo
ae(0) . !*_'(X)Jf: i g hx)

) :

at 2 o 1 Axhax'

Jo

frou which, congidering §,. as a function of g, we. have
2 _
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(@)= 0
%

oy
48,(0) 2} Mx")ax'
9y,
de p(x) (94)
2 s X
a®g (0 b j Nx!)dx ! f
= 1 : [p'0) | Mxhax' = pOM0 1
Similarly, from (91') we have
Ff(oi) =0
dg(0) - _ B 5
a5 2 [ Mxnaxt (95)
. No., |

ami ¥ A2

a%e(0) _ p'(x) jo M;sf_)dx i PEIPNE)

5 Pl fx Naxtyax' T
J 0

from which, considering Ll as a function of g, we have

51(0) 0

ag, @ 2| Mxnax
1 0

de _ u(x) (96)
afg o) M+ Y S )
1 = 40 [ p'(X) J aMxdx!t - p(xINx)] .
ae? g3(x) 2

Using (92) we may write (87) in the form
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5% (%) i=eX( :

dgr . 2 G —er(x)] [5,(xy 5= + 0) = sy(x = £qy = + O)]

% éi%l +Hix)= eX(x) & iz aey
18745

a(x+E,) [p{x) +eh(x)] |
+ E [55(x, -2% + 0)-52(x + &g % + o)l
a(x+E.)
b..f:.. + p(x+§2)-g)\f:{+€,2)

Using (87'), (9%) and (96), we now expand dF/dx in a pover series

in €, keeping only the terms of lowest order in € and obtain

ax ol .
" 7 e S el LS 0
e ,5__;a(x)-b(x)t\!o ‘) D g(x? ?§+< )] (97)

gt - {alx)+b(x) N\ b(x) - 9x.

.in which we have substituted (92) énd.(92') in order to return

to the variables £(x) and b(x). Comparing. (97) with {36) ahd?

following the methods used to arrive at (42) énd (H?), we " see
that the salinity formerly given by (42) is now expressed by the

following similar equation:

e N
{7 kxnax

p— JEL :
s(x)—= s(L)e (98)
where : i
s _ R a(x) + b(x) b(x) |
2 2w a(x) » b(x) ‘[ﬁx S el
B : ‘ C(x')ax';
RAY J

which is identical with (42) if a(x), b(x) and (x) are constant,

Extension of-Analysis to More General Xinetic Conditions.
Finally, we consider a model which is identical to the

LY

» b,

X

first model (

[y

censtant, complete mixing at high and low

tide and no mixing-

)

t other times) excent that the vottom layzr

[

£

]

scured to have a periodic veloeity
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uy (£} = = U cos (uwt + @ (92)

For this case the flux.formerly given hy (28) is now

57/ 2w-0
!
F(x) = \ (byus5, + byuysg)dt
Jr/2uw-0
R (100)
37/20=0 5x/2w=0 '
J [ g _
00 flx,t)dt + | £(x,t)dt
1
J
J /2 w0 3In/2w+0

where: ' _ \ ]
f{xyt) = byuss, + bjuysy, by =b * { sin.wt, by = a
and u, is given by (6), and u, by (99).

Following the work done previously we now have, in

place of (29),

dE :-(B +LYes(xy X+ 0) +'a s lx b8
dx e T ey st l( ’ 5:;.+ ) (101)
= {br+ QSQ(X, i 0) - a sl(x, %‘-73-,0)
since from the continuity Eq. (32)5
(bysy + boso)| = (bysy + h,s .
i ."%Maﬁ) A 22%m@ﬁ0

Since we have assumed mixing complete after high and low tides,
(ié) and (16) may still be used. The continuity equations (31)
and (32) may also be applied to this model and since uz.is still
given b; ké), Eés: (é), (10), (11), and (12) may also be used,
derever, (13) and (1%) must now be changed to (see Egs. (9) and

1))
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(kn + L)% f4no- g 0) (102)

Ppz 2w = 0) = 59(x + vy, i
s, (x, Sigzi_ili - 0) ='311x - Y1» $&2§5‘12£ + 0) {102)
n =0, +1, &2, ess
ieiatl Allin+l ) n/2w
Yoo u, (£)dt = _%IL%M (102")
(kn-l)n/Qu
"(4n+3)n/2w ‘
¥ uy(Eat = E_U—%)_E_i : (103 1)
(4n+1)m/2w

Since with bl = §; a constant, we have Yé = yqy We Qénote their .
common-value by 2ﬁ4co§_'_L ot
| rean 28 (104)

-
the distance traveled by the lower layer between_high and low
tide,
de ‘now express the ;aripus terms in (101) in terms of

sa(x,.gé + 0)*

From (15) sl(x,.gi + 9? = §5(x, éL + 0) and
from (16) s, (x, %g + 0) = sz(x,uég + 0) and

LY TC S o 5
from (11) 52(x, ELI 0) = S (£ = £y ;E + 0)

where x - g is given in (12).

From (103), (15) and (104) we have
sp0%y 22 = 0) = sy(x -, .2_.’; + 0) (10%)

rom (16) 5-,(}(, i S = s,,(};’- }_‘:I_ + 0)
= = 2w
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i
]

and substituting (11), (1C5) and (16) in (32) we have

e T A medor Ay s i i : W :
s5(x, 55(+ G) = Tk SQ(X e +Q)+(b-§)52\x £y = +0)]

From (9) and (106&;

(10A)
SR e i [a 5,(x+by s + 0)4(b-L)s,(x, & + 0)]
B3P a+b-§ 1’2 2 2w
(107)
where 5, = €2 -Y (108)
following the method used for evaluating v.
Finally, from (102), (16) and (106)
S
57 (x, é—- 0) = __——Z [a sp(x5 JE + 0)+(b-0)s,(x-8, ﬁ% + 0)]
(109)
where, from (7%) A
; T = i Y)(b = C) A
,x_:,b2 = 5T T (110)
Substituting (11), (15), (16), (105), (106), (107), and (109)
in (101) we have
id _
D 111}
o-C b3 & v SR
+§§m)— (32(X, ‘é-(:\ + O) - -2(){ = bz, ?‘-w‘ + O)] .

If we assume y to be of order C/bnand that €
write

L/b << 1 we may

aF _ ab(l+¢)

EL = et sq(x,._"+0)~52(>;+b,,..1‘.+0)]
dx  a+bli-g) 2w =7 2w (111')
_e\ - -

where from (10)y (12), -(168), and-(110)

2xe
& Elaaoor

1.3 1 -¢ o

-\
s
o
(4]

e
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2xe s
7)2 = Ce Y(i > z), (113)

Using (111%), (112), (113), and (1C%) we expand the right hand
side of (111!} in a pouer series in ¢ and xeep only the terms

of lowest order in € = {/b, The result is

+*

aso(x, J%L + 0}

d2 _ .ah 8 22X _ 52 \
dx  a+pb a3x ‘o ~r) ax ’. (11%)

This result is just what one might have expected since, to first
order in e, the distance traveled by the unper layer in zoing
from low to high tide is, as was'previously shown, § = E%E '
whereaé the distance now traveled by the lower layer'in fhis

same time interval is y = EELiEEi.? s and hence the te~nm which
corresponds to the diffusion coefTicient is again proportional

to the square of the relative diéplacemeﬁﬁs of the top and bottom
layers. Folilowing the work previously done, weicguld also solve

(11%) and obtain the salinity. The_result is

k _l__. )
s(x) = s{l)e = X'Xo (115)
where B i
24}05 ;
— \/ &
b i

Difusion Byuation i1 the Non-gteady Cage and in the Presence

cf a Sclute Source Dis trlb‘tlon._”

Let us return to eauauiop (hl) The 1éft‘hand.side
exprecces the flux of salt upstrﬁam pa t‘bhe cross-sseticn at x
during a tidal cyele as a ccnsequence,ciﬂﬁhé;§ides.f Tbefriéht
hand side expresces the ®lux dovﬁ:trréﬁ paét the;s@me sééiiop

and during the same interval due to the river. Eguaticn (41)

exgresses the fact that these two contributisns to the [lurx nust
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cancel in an estuary in which conditions do not change from cycle
to cyele and in which no salt (or other sclute) is introduced
into, or removed Irocm, the estuary by external agents.

We ncw allow for variation of the soiute conczntration
from cycle tc cycle and also for intrzduction of solute into

the estuary.

s(x, £).

e

N5

(x+Ax,t)

S, B

X ——— 1 X+AX :
Consider an element of estuary of length Ax and of mean

cross-sectional area during a tidal cycle a+b. The flux cut of

the element at x during the time At due to the tides is:

WL ah_ %P BEAL L SW At
bz a+b ox 3x v

The fluxz into the element at x + Ax dufing time &t
due to the tides is (negiecting terms which will vanish in the
limit Ax, At—>0)

'&Cgi w 2 2 :
N | I o as + & 2s AL
‘.b2 aib 2 X ax | A% (x ax)Ax]At 27 At.

‘Thgw;;t fiﬁx iﬁfo.the eloment due'éclthe tides during
At is ' ot ape
i3 . ! L. ? - .;
ps BEP SN B, B (116)
2 85ya 4
(,gl ax)Ax ot

LY

Let us a-zume that the derivation of expressisn {114) ramains
valid if.we permit changes in solute concercratisn from cycle

to ecycle as well as solute introduction by exicernal azents
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(provided our fundamental mixing model is nct altered). The time
devendence of the sailinity will méét likely be due to variation
in the river discharge. The external agent may be tﬁe discharge
of pollution by an indunstry. The mixing model may then be ex-
peéted to be essentially unchanged provided the time during which
the river discharge veriegs significantly is large compa?éd.to é
tiiéi'cycle and provided the amount of solute which is introduced
.'during a tidal cycle is so small that it does not materiallyﬁ
gfféct the cohcentration,dﬁring-thig{qiéle.
Thé‘flux into the element iqftime At at x due poughe

river is - R i,
R(t)sAt.
The flux out of the element at X + 4% due To the river’
is S e |
R(s 4;%‘@::)13&

The net flux out of the clement due to the river is
;. r- _ .T_a_-.s;;i . A : e + 5
R(E) 22 Awdt. (117)

If q{x,.t) denotes the introduction of soiute into the

estuary por unit length of ostuary and per walt time (di@éngions
L) . i 5 . '

ML™ 7= 1) then the total ineriase of sclute in the clement during

At is

2 .~2.Gs | y 28 e b ) ;
D5z (87 3983t - R 28 AxAt + q(x,t)Axbt, - (118)

This must b2 “qual to

[s(t + At) - s(t) ] (a + b Ak

= A8 (g 4+ biAXAtL (119,

(o]
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Hence we oktain the foliowing differential eguation for the

concentration of solute

3 43 .§.§ ‘(‘l‘,‘)ﬁ&:
{a+b) I R( 1) o

,.\
E
n
ol fo 1
L

> |
S’
+
N
Pt
™
ot
S
L]
—
4
’—I
0
N

2w
2

Conclusion.

In this report we have derived an eguation zoverni
the distribution of a solute in an estua“y 1n which tne river
flow and the tidesrare the'predominant factors and in which the
dynamic_ﬁnd mixing.conditions can be.deﬁcribedwhy a'very simple’
physical model. This mdel was subsequently generalized in-
vévlous ways and it was found that the basic form of the diffu-
sion equation uas unchanged, It should be noted that the various
-generalizations which were discussed independently can all be
combined into one model, In the last section an equation was
~derived which allows for time dependence: of the various quanti-
tics involved and for dntroauction of solute into the estuary by
an external agent,

In prde;,;o ascertain if thz theory 1is ctapacie o1 des=-
cribing the conditions in a reél estuary it will bec necessary to
compare the nredictions of this thecory with the observational
data from a number cf estuaries whose over-all structure permits
application of this thecorye In particular this will imply that
the estuarices are essentially vertical]y homcgeneous, that their
préperties are determined mainly by the river and tides and that
it 15 fcasgible to divide the'éross-section at any position along

the es taor/ into two re-ions such that the tidal velocity is



(G2

Nonr=%

essentially uniform within each regis

tion of

derived

1.

2. Al

B, H. Ketchum;

B.

|,‘2/2 )y

X 7

-
3

1t di“ferent for the two

However, even if it is found that

to real estuaries it

be hoped that it will be a useful bpsis for the formula-
more =laborate theories that will describe real estuaries.

A few interesting sclutiscns of the diffusion equation

in the last section will be given in a future rcport,
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